
LLNL-CONF-681457

Reducing The Variability Range of
Application Performance Across Distinct
Hardware Platforms Using OS-level
Virtualization

I. Jimenez, C. Maltzahn, A. Moody, K. Mohror, J.
Lofstead

January 28, 2016

Workshop on Variability in Parallel and Distributed Systems
(VarSys)
Chicago, IL, United States
May 23, 2016 through May 23, 2016



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Characterizing and Reducing Cross-Platform
Performance Variability Using OS-level

Virtualization
Ivo Jimenez and Carlos Maltzahn

UC Santa Cruz
{ivo,carlosm}@cs.ucsc.edu

Jay Lofstead
Sandia National Laboratories
gflofst@sandia.gov

Adam Moody and Kathryn Mohror
Lawrence Livermore National Laboratory
{moody20,kathryn}@llnl.gov

Remzi Arpaci-Dusseau and Andrea Arpaci-Dusseau
University of Wisconsin-Madison

{remzi,dusseau}@cs.wisc.edu

Abstract—Independent validation of experimental results in
the field of parallel and distributed systems research is a challeng-
ing task, mainly due to changes and differences in software and
hardware in computational environments. In particular, when
an experiment runs on different hardware than the one where
it originally executed, predicting the differences in results is
difficult. In this paper, we introduce an architecture-independent
method for characterizing the performance of a machine by
obtaining a profile (a vector of microbenchark results) that we
use to quantify the variability between two hardware platforms.
We propose the use of isolation features that OS-level virtual-
ization offers to reduce the variability observed when validating
application performance across multiple machines. Our results
show that, using our variability characterization methodology,
we can correctly predict the variability bounds of CPU-intensive
applications, as well as reduce it by up to 2.8x if we make use of
CPU bandwidth limitations, depending on the opcode mix of an
application, as well as generational and architectural differences
between two hardware platforms.

I. INTRODUCTION

A key component of the scientific method is the ability to
revisit and reproduce previous experiments. Reproducibility
also plays a major role in education since a student can
learn by looking at provenance information, re-evaluate the
questions that the original experiment answered and thus “stand
on the shoulder of giants”. In the wide field of computer
systems research, the issues of reproducibility manifest when
we validate system performance. In order to validate a claim,
we need to show that the system performs as stated, possibly
in a variety of different scenarios.

When evaluating system performance, multiple variables
need to be accounted for; among them are source code changes,
compilation and application configuration, as well as workload
properties and hardware characteristics. A rule of thumb while
executing experiments is: across multiple runs, modify only
one variable at a time so that correlation can be accurately
attributed to the right variable. Generally, properly enumerating
all the environment variables in the software stack is an
arduous endeavour; adding hardware to the mix makes it all
but impractical since predicting the differences in results that

originate when we vary the hardware “variable” is a challenging
task. Ideally, given two particular hardware setups, we would
like to have a quantifiable expectation of the performance
variability for any application running on these machines. That
is, if we execute an application on one machine and then execute
it on another one, we would like to bound the variability (i.e. the
performance range) that any application running on the former
would observe when executed on the latter.

In this work, we initially focus on single-node performance
variability, since it is the fundamental building block in
distributed and parallel settings. We introduce an architecture-
independent method for characterizing the performance of a
machine by obtaining a profile (a vector of microbenchark
results) that we use to quantify the variability between two
hardware platforms. We show this can correctly predict the
variability bounds of CPU-intensive applications. We also
investigate OS-level virtualization as a way of reducing the
expected variability over executions of applications on distinct
platforms. OS-level virtualization offers several features for
reproducing system performance. While core affinity and
memory/swap size limitations have been shown to bring
stability across executions in one single system [1], the use
of CPU bandwidth limitations can reduce the variability for
executions across different platforms. Our experiments show
that using CPU bandwidth limitation reduces performance
variability by up to 2.8x, depending on the opcode mix of an
application, as well as generational and architectural differences
between two hardware platforms.

II. OS-LEVEL VIRTUALIZATION

OS-level virtualization is a method where the kernel of an
OS allows for multiple isolated user spaces, instead of just
one. Such instances (often called containers, virtual private
servers (VPS), or jails) may look and feel like a real server
from a user’s point of view. In the remaining of this paper
we focus on Docker [2], which employs Linux’s cgroups and
namespaces features to provide OS-level virtualization. While



our discussion is centered around cgroups, the overall strategies
can be applied to any of the others.

A. CPU Bandwidth Throttling

Linux’s cgroups is a unified interface to the operating
system’s resource management options, allowing users to
specify how the kernel should limit, account and isolate usage
of CPU, memory, disk I/O and network for a collection of
processes. In our case, we’re interested in the CPU bandwidth
limiting capabilities. cgroups exposes parameters for the
Completely Fair Scheduler (CFS). The allocation of CPU for a
group can be given in relative (shares) or absolute (period
and quota) values. Figure 11 shows the effect that multiple
values for quota have on the execution of a CPU-bound
process.

B. Limitations of Throttling

While absolute CPU bandwidth limitations work well
to isolate processes within a single system, they are not
guaranteed to be as effective to reproduce performance across
multiple platforms and multiple applications, i.e. finding a
value of quota on a target machine that would reproduce the
performance observed in a base one. The main reason being
that fundamental differences between two machines (e.g. CPU
and memory bandwidth) make it practically impossible to find
a single value for quota that works for every application.
One can find quota/period values that reproduce results for a
particular application, but these values won’t work for another
application with a different opcode mix.

III. CHARACTERIZING PERFORMANCE VARIABILITY

Quantifying performance variability across hardware plat-
forms entails characterizing the performance of single machines.
While the hardware and software specification can serve to
describe the attributes of a machine, the real performance
characteristics can only feasibly2 be obtained by executing
programs and capturing metrics at runtime. So the question
boils down to which programs should we use to characterize
performance? Ideally, we would like to have many programs
that execute every possible opcode mix so that we measure
their performance. Since this is an impractical solution, an
alternative is to create synthetic microbenchmarks that get as
close as possible to exercising all the available features of a
system.
stress-ng is a tool that is used to “stress test a computer

system in various selectable ways. It was designed to exercise
various physical subsystems of a computer as well as the
various operating system kernel interfaces”. There are multiple
stressors for CPU, CPU cache, memory, OS, network and
filesystem. Since we focus on CPU bandwidth, we look at

1Throughout this article, we include a source URL for each figure that
links to a github page corresponding to the source code of the experiment that
generated this graph.

2One can get real performance characteristics by interposing a hardware
emulation layer and deterministically associate performance characteristics
to each instruction based on specific hardware specs. While possible, this is
impractical.

Fig. 1. [source] Boxplots of runtimes of the crafty benchmark for multiple
values of cpu quota (with a fixed period of 100 microseconds) illustrating the
effect of limiting CPU access for a single-threaded process. Every boxplot
summarizes 10 executions (interquartile box is tight and overlaps with the
median).

the CPU “stressor”, which is a routine that loops a function
(termed CPU method) multiple times and reports the rate of
iterations executed for a determined period of time (referred to
as bogo-ops-per-second). As of version 0.05.09, there
are 68 CPU methods that range from bitwise, control flow and
floating/integer operations on multiple word sizes.

Using this battery of CPU stressors, one can obtain a profile
of CPU performance for a machine. When this profile is
normalized against the profile of another machine, we obtain
a variability profile that characterizes the speedups/slowdowns
of a machine B with respect to another one A. We refer to this
profile as the variability profile for B/A (or the B/A profile
for brevity). Figure 2 shows a histogram (in green) of the
variability profile of two machines for all the CPU stressors of
stress-ng. The purple histogram is discussed in Section V.

Given an application, at the hardware level, variability
can originate from mainly two sources: hardware generation
and major architecture. While it is possible to analyze the
performance variation that presents when going from new
(faster) to old (slower) architectures, in this work we focus
on the opposite (old to new). We believe this is a reasonable
assumption since this is the nature of technology advances
and mimics the scenario that researchers go through while
attempting to reproduce published experiments. Also, we only
look at x86_64 and, as shown in Section V, we vary between
AMD and Intel implementations of this ISA.

IV. REDUCING PERFORMANCE VARIABILITY

We now present a methodology that leverages the CPU
bandwidth limitation feature of OS-level virtualization to reduce
the variability range of performance across distinct hardware
platforms. When reproducing performance of an application
on a target machine T that originally ran on a base machine
B, we propose the following calibration methodology:

1. Execute microbenchmarks on B that characterize the
underlying hardware platform.

2. Manipulate absolute cgroup values for the CFS on target
machine T in such a way that the performance of

http://kernel.ubuntu.com/~cking/stress-ng
https://github.com/ivotron/varsys16/blob/submission/exp/cgroups


microbenchmarks is as close as possible to the results
from machine B; a configuration Ct is obtained.

3. Apply the configuration Ct on machine T and execute the
application, which should observe reduced performance
variability when compared against the unconstrained
execution on T .

If the original execution of the application on base machine
B was itself being constrained, then this configuration Cb

should be applied in step 1. While we believe this methodology
applies to many scenarios, we currently have tested it on single-
threaded and non-collocated workloads (see Results section).

A. Tuning The Target Machine

Finding the values of CPU bandwidth (step 2) is done via
program auto-tunning for one or more microbenchmarks that
characterize the performance of the underlying hardware. At
every execution step, a docker container is instantiated and
constrained with a value for CPU quota. It is reasonable to
assume that the performance of CPU with respect to quota
allocations resembles a monotonically decreasing function
as shown in Figure 1, thus, we can select a random value
within the valid tunable range (or alternatively the highest)
and climb/descend until we get to the desired performance
for the microbenchmark(s) on the target machine. When
multiple microbenchmarks are executed their results need to
be aggregated (e.g. by taking a weighted average of a speedup
metric).

The tuning methodology assumes that the machine where
an application is being ported to is relatively more powerful
that the one were an application originally ran. When this
assumption does not hold, one can resort to constraining the
original execution (i.e. generating a Cb for B).

V. RESULTS

In this section we show the effectiveness of our proposed
methodology (Section V.A) by obtaining the variability profile
for a target machine with respect to a baseline; we do so by
visualizing the reduction of the variability range when we apply
the mapping methodology (Section IV) to the target. We then
study the effects of this reduction by executing a variety of
benchmarks on the same platforms (Section V.B). Due to space
constraints we omit the detailed description of our experimental
setup3. We have one target machine T (2012 Xeon E5-2630)
whose performance is being characterized with respect to a
base machine B (2006 Xeon E5-310). The reason for selecting
a relatively old machine as our baseline is two-folded. First,
by picking an old machine we ensure that the target machines
can outperform the base machine in every test of stress-ng.
Secondly, having an old computer as part of the our study
resembles the scenario that many researchers face while trying
to reproduce results found in the literature.

3For a complete description please refer to the repository of this article at
https://github.com/ivotron/varsys16.

Fig. 2. [source] Histograms for two variability profiles. Each measurement
in a histogram corresponds to the performance speedup/slowdown of a
stress-ng CPU method that a machine has with respect to another one.
For example, in the T/B histogram (green), the architectural improvements
of machine T cause 11 stressors to have a speedup within the (2.3, 2.4]
range over machine B.

A. Reduction of Variability Range

Comparing the range of two histograms illustrates the
differences in performance variability for a pair of machines.
Perfect performance reproducibility of results would result in
having the performance of every benchmark to be in x = 1.0.
As mentioned before (Section II.B), fundamental differences
between two machines such as CPU, memory, micro-controllers
and BIOS configuration make it practically impossible to have
perfect reproducibility between two platforms.

Yet, reducing the performance variability (shrinking the range
around x = 1.0) is an attainable goal. The green histogram in
Figure 2 corresponds to variability profile T/B. The purple
one corresponds to the variability profile of T after being
constrained using the tuning methodology from Section IV.
We denote this profile as T ′/B. In this particular case, tuning
resulted in a CPU quota of 6372 microseconds for a period
of 10000 microseconds. When these bandwidth limitations are
in place, the variability range is reduced from [1.65, 7.10] to
[0.60, 2.54], i.e. from a range of length 5.45 to one of size
1.94, a ~2.8x reduction.

We make two main observations about Figure 2. First, more
than 50% of the data points cluster around the [0.78, .98] range
(with 88 as the median), while ~25% around the [0.83, 0.93]
range (not shown) for the limited case (purple histogram). In the
unconstrained case (green), the median is 2.48 (mean is 2.70),
with a long tail towards the higher speedup values. Secondly,
while 6372 represents ~63% of CPU time, the range shrinks
only by ~50%. As shown in Figure 1, this is mainly due to the
non-linear behavior of CPU performance under different loads.
An open question is whether the same performance variability
would be observed at the hardware level by using dynamic
frequency scaling.

B. Validation of Variability Characterization

Assuming stress-ng’s distinct CPU methods represent
a realistic coverage of the multiple physical features of a
processor, we can reasonably assume that the performance
of applications with and without constrained CPU bandwidth
will land within the range obtained by our variability char-
acterization profiles introduced in Section III. In order to

https://github.com/ivotron/varsys16
https://github.com/ivotron/varsys16/blob/submission/exp/base-vs-targets/visualize.ipynb


Fig. 3. [source] Histogram for T/B and T ′/B profiles. Measurements
come from the following benchmarks: STREAM, cloverleaf-serial,
comd-serial, sequoia (amgmk, crystalmk, irsmk),
c-ray, crafty, unixbench, stress-ng (string, matrix, memory
and cpu-cache). Vertical lines denote the limits of the predicted variability
range (Figure 2), obtained from executing stress-ng CPU stressors. Points
outside the predicted line correspond to STREAM. The rightmost point for the
unconstrained (green) histogram is not shown to improve the readability of
the figure; it lies on the 14x bin.

corroborate this hypothesis, we executed 66 benchmarks with
and without CPU bandwidth limitations on the target system.
Every benchmark on this and the previous section was executed
on the base and target systems in docker containers. In order to
minimize the variability that might originate from distinct
compiler optimizations we disable compiler optimizations
(gcc’s -O0 flag). Also, as mentioned previously, these are
single-threaded processes running in uncontended systems; our
goal is to generate bounded performance rather than perfect
reproducibility (Section V.B).

Figure 3 shows the results of our tests for both unconstrained
(green; T/B profile) and unconstrained (purple; T ′/B profile)
scenarios. Each point on a histogram corresponds to one
benchmark. The two vertical lines denote the variability range
obtained from Figure 2. For the constrained case (purple), with
the exception of one point, all executions land within the pre-
dicted range. We also observe that while the highest value of the
range obtained in the previous section (rightmost vertical purple
line) is in the 2.6x bin, the performance of 64 out of 66 never
go above the smaller [0.6−1.6] range. In the case of executions
without limits (green histogram), we observe 2 points going
out of the predicted range, the one at [1.5− 1.6] and another
(not shown) at 14x, both corresponding to memory-bound
benchmarks (stress-ng-memory-malloc and STREAM,
respectively).

From the analysis of the variability profiles for these 66
benchmarks, we can conclude that the set of stress-ng
microbenchmarks are good representatives of CPU performance
and thus they can serve to characterize a machine for CPU-
intensive workloads. Also, the variability profile seems to be a
good performance predictor, i.e. an execution lies within the
determined speedup/slowdown range.

VI. RELATED WORK

The challenging task of evaluating experimental results
in applied computer science has been long recognized [3],
where the focus is more on numerical reproducibility rather
than performance evaluation. In systems research, runtime

performance is the subject of study, thus we need to look at it
as a primary issue.

The closest work to our approach is Fracas [4]. Fracas
emulates CPU frequency for the same machine. As reported
in [4], accurately emulating CPU frequencies is a challenging
task, even in the same system. Instead, we take the performance
profiles as our baseline and quantify variability, irrespective of
the differences between frequencies.

Architecture-independent characterization of workloads [5]
and performance [6] has been extensively researched in the past.
In our case, working at the OS virtualization level imposes new
challenges. As we have shown, a way of overcoming these
is by using a comprehensive list of microbenchmarks that
can accurately characterize the performance of the underlying
system.

VII. CONCLUSION

Characterizing the variability between machines signifi-
cantly facilitates the interpretation of results when validating
performance reproducibility across distinct platforms. While
performance models and hardware emulation can, in principle,
accurately capture performance characteristics of hardware, it
comes at extreme cost and difficulty. In this work we have
introduced a simpler model for validating results that relies on
performance profiles and incorporates variability ranges. With
the aid of OS-level virtualization we can reduce the variability
by limiting CPU bandwidth.

Acknowledgements: Work performed under auspices of US
DOE by LLNL contract DE-AC52-07NA27344 CONF-681457
and by SNL contract DE-AC04-94AL85000 .

VIII. REFERENCES

[1] D. Beyer, S. Löwe, and P. Wendler, “Benchmarking and
Resource Measurement,” Model Checking Software, 2015.

[2] D. Merkel, “Docker: Lightweight Linux Containers for
Consistent Development and Deployment,” Linux J., vol.
2014, Mar. 2014.

[3] J.P. Ignizio, “On the Establishment of Standards for Com-
paring Algorithm Performance,” Interfaces, vol. 2, Nov.
1971.

[4] T. Buchert, L. Nussbaum, and J. Gustedt, “Accurate
Emulation of CPU Performance,” Euro-Par 2010 Parallel
Processing Workshops, 2010.

[5] K. Hoste and L. Eeckhout, “Microarchitecture-Independent
Workload Characterization,” IEEE Micro, vol. 27, May.
2007.

[6] G. Marin and J. Mellor-Crummey, “Cross-architecture
Performance Predictions for Scientific Applications Using
Parameterized Models,” Proceedings of the Joint Inter-
national Conference on Measurement and Modeling of
Computer Systems, 2004.

https://github.com/ivotron/varsys16/blob/submission/exp/base-vs-targets/visualize.ipynb

